New paper on iterated learning at the origins of life

Jorge, Nathaniel and I have published an extension of our iterated learning approach to the origins of the genetic code in the Proceedings of the Artificial Life Conference 2018. We unexpectedly found that the most likely sequences in which amino acids get incorporated into the emerging genetic codes in our simulation model exhibit a remarkable overlap with the sequence predicted in the literature based on empirical considerations.

We will present this work at the ALIFE conference in Tokyo as part of the special session on “Hybrid Life: Approaches to integrate biological, artificial and cognitive systems”.

An iterated learning approach to the origins of the standard genetic code can help to explain its sequence of amino acid assignments

Tom Froese, Jorge I. Campos, and Nathaniel Virgo

Artificial life has been developing a behavior-based perspective on the origins of life, which emphasizes the adaptive potential of agent-environment interaction even at that initial stage. So far this perspective has been closely aligned to metabolism-first theories, while most researchers who study life’s origins tend to assign an essential role to RNA. An outstanding challenge is to show that a behavior-based perspective can also address open questions related to the genetic system. Accordingly, we have recently applied this perspective to one of science’s most fascinating mysteries: the origins of the standard genetic code. We modeled horizontal transfer of cellular components in a population of protocells using an iterated learning approach and found that it can account for the emergence of several key properties of the standard code. Here we further investigated the diachronic emergence of artificial codes and discovered that the model’s most frequent sequence of amino acid assignments overlaps significantly with the predictions in the literature. Our explorations of the factors that favor early incorporation into an emerging artificial code revealed two aspects: an amino acid’s relative probability of horizontal transfer, and its relative ease of discriminability in chemical space.

Figure 2

Illustration of the architecture of the genetic system of one of our hypothetical protocells.

Advertisements

Psychological study on chaos control

Dobri Dotov and I have published an extended abstract in the Proceedings of the Artificial Life Conference 2018 about the study that he realized at UNAM. We suggest that the results have implications for how we should think about how to stabilize the behavior of complex adaptive systems with which we can interact.

We will present this work at the ALIFE conference in Tokyo as part of the special session on “ALife and Society: Transcending the artificial-natural divide”.

Mutual synchronization and control between artificial chaotic system and human

Dobromir Dotov and Tom Froese

Dexterous assistive devices constitute one of the frontiers for hybrid human-machine systems. Manipulating unstable systems requires task-specific anticipatory dynamics. Learning this dynamics is more difficult when tasks, such as carrying liquid or riding a horse, produce unpredictable, irregular patterns of feedback and have hidden dimensions not projected as sensory feedback. We addressed the issue of coordination with complex systems producing irregular behaviour, with the assumption that mutual coordination allows for non-periodic processes to synchronize and in doing so to become regular. Chaos control gives formal expression to this: chaos can be stabilized onto periodic trajectories provided that the structure of the driving input takes into account the causal structure of the controlled system.

Can we learn chaos control in a sensorimotor task? Three groups practiced an auditory-motor synchronization task by matching their continuously sonified hand movements to sonified tutors: a sinusoid served as a Non-Interactive Predictable tutor (NIP), a chaotic system stood for a Non-Interactive Unpredictable tutor (NI-U), and the same system weakly driven by the participant’s movement stood for an Interactive Unpredictable tutor (I-U). We found that synchronization, dynamic similarity, and causal interaction increased with practice in I-U. Our findings have implications for current efforts to find more adequate ways of controlling complex adaptive systems.

UNISON

Keynote at “Time, the Body, and the Other”

I will be a keynote speaker at the international conference on Time, the Body, and the Other: Phenomenological and Psychopathological Approaches, which will take place September 13-15, 2018, in Heidelberg.

The title of my contribution will be: “Integrating Phenomenology and Systems Theory: Time and the Other in Schizophrenia as a Case Study”

Header-September-2018neu

Talk at the Annual Meeting of the Society for American Archaeology

Next week I will present the latest installment of our model-based research into the social organization of ancient Teotihuacan at this year’s Annual Meeting of the Society for American Archaeology. Here is the title and abstract:

A network model of co-rulership and community ritual in Teotihuacan: From neighborhoods to districts

Tom Froese and Linda R. Manzanilla

Experts remain divided about the nature of the sociopolitical system of ancient Teotihuacan, which was one of the earliest and largest urban civilizations of the Americas. Excavations hoping to find compelling evidence of a powerful dynasty of rulers, such as a royal tomb, keep coming away empty-handed. However, the alternative possibility of a corporate or collective government, perhaps headed by a small number of co-rulers, also remains poorly understood. A third option is that the city’s collective government begun as a fully decentralized network of neighborhood representatives, but this kind of arrangement seems susceptible to the problems of cooperation and action coordination. Previously we used a computational model to show that in principle this latter worry is unfounded, as long as we assume that the network’s topology could be transformed via community rituals and was not strongly subdivided (Froese, Gershenson, and Manzanilla 2014). Here we extend this model to investigate whether centralized hierarchy could mitigate the negative effects of strong divisions. The new results reveal a peculiar synergy between hierarchy and community ritual in that only their combination improved the extent of coordination, which is consistent with portrayals of the elite as religious specialists serving the public.

Keynote at From Animals to Animats 15 (SAB 2018)

I will be a keynote speaker at FROM ANIMALS TO ANIMATS 15: The 15th International Conference on the Simulation of Adaptive Behavior (SAB 2018), which will take place 14-17 August 2018, in Frankfurt, Germany, and is organized by the International Society for Adaptive Behavior (ISAB).

Here is my title and abstract:

Searching for the conditions of genuine intersubjectivity: From robotics to HCI

Tom Froese

Many our most valued experiences are experiences that we share with others. Yet the basis for this sense of we-ness remains mysterious. Could it really be possible that two people share one and the same experience? How so? Two lines of research are providing important insights. First, complex systems analyses of social robotics and agent-based models have demonstrated that there is nothing mysterious about the possibility of cognitive activity being distributed in a multi-agent system. Second, experimental investigations of real-time embodied social interaction mediated by human-computer interfaces demonstrate that co-regulation of interaction dynamics makes a difference to experience. This formal and empirical research on social interaction supports the possibility of genuine intersubjectivity: we can directly participate in the unfolding of each other’s experience.

The 2nd Week on Complexity Sciences at C3-UNAM

The 2nd Week on Complexity Sciences will be held at the Center for Complexity Sciences (C3) at UNAM’s main campus from Jan. 31 to Feb 2. There will be many international invited speakers.

I will give a talk on the recent work I did with Prof. Alejandro Frank on the origins of the genetic code on Jan. 31 at 13:00. The title of our contribution is “A new approach to the origin of the genetic code”.

Invited talk at the 3rd Joint UAE Symposium on Social Robotics

The 3rd Joint UAE Symposium on Social Robotics will be hosted by the United Arab Emirates University and New York University Abu Dhabi during 4-7 February.

The title and abstract of my invited talk are as follows:

Searching for the conditions of genuine intersubjectivity: From robotics to HCI

Tom Froese

Many our most valued experiences are experiences that we share with others. Yet the basis for this sense of we-ness remains mysterious. Could it really be possible that two people share one and the same experience? How so? I will argue that enactivists are starting to identify the conditions of this kind of genuine intersubjectivity. To be fair, theory of mind approaches to social cognition have also come a long way from folk psychological theorizing by paying more attention to neuroscientific evidence and phenomenological insights. This has led to hybrid accounts that incorporate automatic processing and allow an instrumental role for perception and interaction. However, two foundational assumptions remain unquestioned.

First, the cognitive unconscious: explanations assume there is a privileged domain of sub-personal mechanisms that operate in terms of representational personal-level concepts (belief, desire, inference, pretense, etc.), albeit unconsciously. Second, methodological individualism: such explanations of social capacities are limited to mechanisms contained within the individual.

The enactive approach has broken free from these representationalist-internalist conceptual constraints by directly integrating personal-level phenomenology with multi-scale dynamics occurring within and between subjects. Complex systems analyses of social robotics and agent-based models have demonstrated that there is nothing mysterious about the possibility of cognitive activity being distributed in a multi-agent system. Experimental investigations of real-time embodied social interaction mediated by human-computer interfaces demonstrate that co-regulation of interaction dynamics makes a difference to experience. This formal and empirical research on social interaction supports the possibility of genuine intersubjectivity: we can directly participate in the unfolding of each other’s experience.

Talk on the social brain hypothesis in fish

Tomorrow there will be a workshop at the Merida site of the Institute for Applied Mathematics and Systems Research. The topic is “La Computación y las Matemáticas Aplicadas para Resolver Problemas en la Ciencia”.

I was invited to give a talk and will present “The social brain hypothesis in fish: A big data approach”.

Here is the program of the event:

6th Roundtable Teotihuacan

Today started the 6th Roundtable of Teotihuacan, which will take place in Teotihuacan during Nov. 16-18, 2017.

There is live transmission of the main talks: http://www.inah.gob.mx/es/mesa-teotihuacan-programa

The title and abstract of my talk are as follows:

Explorando la función del posible cogobierno de distritos con base en un modelo matemático de su red social

Dr. Tom Froese y Dra. Linda R. Manzanilla
Read the rest of this entry »

« Older entries