The standard genetic code can evolve from a two-letter GC code

The model of an iterated learning approach the origins of the genetic code inspired this related hypothesis about a simplified precursor to the standard four-letter genetic code, which will be released in Origins of Life and Evolution of Biospheres:

The standard genetic code can evolve from a two-letter GC code without information loss or costly reassignments

Alejandro Frank and Tom Froese

It is widely agreed that the standard genetic code must have been preceded by a simpler code that encoded fewer amino acids. How this simpler code could have expanded into the standard genetic code is not well understood because most changes to the code are costly. Taking inspiration from the recently synthesized six-letter code, we propose a novel hypothesis: the initial genetic code consisted of only two letters, G and C, and then expanded the number of available codons via the introduction of an additional pair of letters, A and U. Various lines of evidence, including the relative prebiotic abundance of the earliest assigned amino acids, the balance of their hydrophobicity, and the higher GC content in genome coding regions, indicate that the original two nucleotides were indeed G and C. This process of code expansion probably started with the third base, continued with the second base, and ended up as the standard genetic code when the second pair of letters was introduced into the first base. The proposed process is consistent with the available empirical evidence, and it uniquely avoids the problem of costly code changes by positing instead that the code expanded its capacity via the creation of new codons with extra letters.

Advertisements

Perspectives on open-ended evolution

I gave a talk at the first workshop on open-ended evolution that was held in association with the European Conference on Artificial Life in 2015. A report about that workshop has now been published in the Artificial Life journal.

Open-ended evolution: Perspectives from the OEE workshop in York

Tim Taylor, Mark Bedau, Alastair Channon, David Ackley, Wolfgang Banzhaf, Guillaume Beslon, Emily Dolson, Tom Froese, Simon Hickinbotham, Takashi Ikegami, Barry McMullin, Norman Packard, Steen Rasmussen, Nathaniel Virgo, Eran Agmon, Edward Clark, Simon McGregor, Charles Ofria, Glen Ropella, Lee Spector, Kenneth O. Stanley, Adam Stanton, Christopher Timperley, Anya Vostinar, Michael Wiser

We describe the content and outcomes of the First Workshop on Open-Ended Evolution: Recent Progress and Future Milestones (OEE1), held during the ECAL 2015 conference at the University of York, UK, in July 2015. We briefly summarize the content of the workshopʼs talks, and identify the main themes that emerged from the open discussions. Two important conclusions from the discussions are: (1) the idea of pluralism about OEE—it seems clear that there is more than one interesting and important kind of OEE; and (2) the importance of distinguishing observable behavioral hallmarks of systems undergoing OEE from hypothesized underlying mechanisms that explain why a system exhibits those hallmarks. We summarize the different hallmarks and mechanisms discussed during the workshop, and list the specific systems that were highlighted with respect to particular hallmarks and mechanisms. We conclude by identifying some of the most important open research questions about OEE that are apparent in light of the discussions.

The York workshop provides a foundation for a follow-up OEE2 workshop taking place at the ALIFE XV conference in Cancún, Mexico, in July 2016. Additional materials from the York workshop, including talk abstracts, presentation slides, and videos of each talk, are available at http://alife.org/ws/oee1.