New article on entraining chaotic dynamics

We show that it is possible for a participant to interactively control a chaotic system by entraining with its dynamics, with the effect that they become more regular while the participant becomes more chaotic.

This has implications both for researchers interested in controlling chaotic systems, and also for practitioners in movement rehabilitation.

Entraining chaotic dynamics: A novel movement sonification paradigm could promote generalization

Dobromir Dotov and Tom Froese

Tasks encountered in daily living may have instabilities and more dimensions than are sampled by the senses such as when carrying a cup of coffee and only the surface motion and overall momentum are sensed, not the fluid dynamics. Anticipating non-periodic dynamics is difficult but not impossible because mutual coordination allows for chaotic processes to synchronize to each other and become periodic. A chaotic oscillator with random period and amplitude affords being stabilized onto a periodic trajectory by a weak input if the driver incorporates information about the oscillator. We studied synchronization with predictable and unpredictable stimuli where the unpredictable stimuli could be non-interactive or interactive. The latter condition required learning to control a chaotic system. We expected better overall performance with the predictable but more learning and generalization with unpredictable interactive stimuli. Participants practiced an auditory-motor synchronization task by matching their sonified hand movements to sonified tutors: the Non-Interactive Predictable tutor (NI-P) was a sinusoid, the Non-Interactive Unpredictable (NI-U) was a chaotic system, the Interactive Unpredictable (I-U) was the same chaotic system with an added weak input from the participant’s movement. Different pre/post-practice stimuli evaluated generalization. Quick improvement was seen in NI-P. Synchronization, dynamic similarity, and causal interaction increased with practice in I-U but not in NI-U. Generalization was seen for few pre-post stimuli in NI-P, none in NI-U, and most stimuli in I-U. Synchronization with novel chaotic dynamics is challenging but mutual interaction enables the behavioral control of such dynamics and the practice of complex motor skills.


Special issue has been released!

It’s been a long time in the making, but finally it has come out: a special issue of Constructivist Foundations dedicated to a comprehensive reflection on the relationships between enaction and other alternative approaches to cognitive science! It is the biggest issue of the journal yet.

For a small donation you can get a print version of the special issue delivered to you! Please help to support this free online journal. Click the link for details: